Free Algebra
Tutorials!
 
Try the Free Math Solver or Scroll down to Tutorials!

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 
 
 
 
 
 
 
 

Please use this form if you would like
to have this math solver on your website,
free of charge.


Multiplying Complex Numbers

Multiplying complex numbers is very much like multiplying polynomials. When we simplify the result, we replace each occurrence of i2 with -1. We often write the final result in the form a + bi.

 

Example 1

Find: 5i · 7i

Solution

Multiply 5 · 7 and multiply i · i.

Replace i2 with -1.

Multiply.

So, 5i · 7i = -35.

5i · 7i

= 35 · i2

= 35 · (-1)

= -35

Note:

We write -35 in the form a + bi like this: 0 + (-35)i

 

Example 2

Find: 4i(9 - 6i)

Solution

Distribute 4i.

Multiply the factors in each term.

Replace i2 with -1.

Simplify.

Write the result in the form a + bi.

So, 4i(9 - 6i) = 24 + 36i.

  4i(9 - 6i)

= 4i · 9 - 4i · 6i

= 36i - 24i2

= 36i - 24(-1)

= 36i + 24

= 24 + 36i

 

Example 3

Find: (7 - 4i)(10 + 5i)

Solution

Multiply using the FOIL method.

Multiply the factors in each term.

Replace i2 with -1.

Combine like terms.

So, (7 - 4i)(10 + 5i) = 90 - 5i.

   (7 - 4i)(10 + 5i)

= 7 · 10 + 7 · 5i - 4i · 10 - 4i · 5i

= 70 + 35i - 40i - 20i2

= 70 + 35i - 40i - 20(-1)

= 70 + 35i - 40i + 20

= 90 - 5i

 
All Right Reserved. Copyright 2005-2024